
ISSN: 0974-2115

www.jchps.com Journal of Chemical and Pharmaceutical Sciences

April - June 2016 E -428 JCPS Volume 9 Issue 2

Novel approach for identifying bugs using text classification and

information retrieval
S. Sri Gowthem, M. Sriram, J. Sridhar*

Department of Computer Science and Engineering, Bharath University

*Corresponding author: E-Mail: sridhar.cse@bharathuniv.ac.in

ABSTRACT

Data mining problems in software engineering that are under dynamic investigation. Software errors

continue to be frequent and represent the significant reason for system failures. To start with analyze and understand

the bug characteristics, and then grouping of similar bugs. A novel approach that applies data mining stratergies to

extract information in large software and exploit such extracted information for bug detection. To understand the

bug characteristics, this study proposes applying text classification and information retrieval techniques to

automatically classify tens of thousands of bug reports.

KEY WORDS: data mining, bugs, software testing, text classification, information retrieval

1. INTRODUCTION

Software testing is established to find errors by executing source code for improving organization and

corrective maintenance. Many automated tools test the source code with the intent of finding error consists of false

positives, so testers finds difficult to fix and track the bugs which causes the system fail. If a developer code the

project in higher programming language version and one finds a part of the source code in lower version in open

source code. While integrating the developer gets the compatibility error between the higher and lower versions of

programming languages. So here it plays a major role to know the programming version of the open source code.

We proposed a novel method for finding version of programming language. And clustering of similar kind of bugs

minimizes the time to eradicate the bug easily. Altogether the main purpose of our approach is to minimize

developer’s time and effort. It’s a data mining approach to software testing.

 Data mining is a process of semi automatically analyzing large database to find patterns that are

valid, novel, useful and understandable. Software errors continue to be frequent and account for the major causes of

system failures. In this proposed work it discovers software bugs through data mining approach in different versions

of software. By identifying the versions through mining large amount of version history data base the tester can fix

the bug in which version the bug lies. Identifying version of the source code helps us to fix bug, suppose a developer

made a change what else does to change further, it also helps to find bugs, if a programmer wants to commit changes,

but has missed a related change. Software testing can be defined as the intention of producing failure, uncover errors,

in large projects. So we used a data mining techniques to eradicate the bugs easily by mining versions, and clustering

a similar error which is a time consuming job. Versioning indicates the programming language packages evolved

from the origin of the language. Developers locate the bug and then fix it by changing files related to the bug.

Traditionally bugs are identified by examining the output from software execution, performing software inspection,

or running static analysis tools. Bugs, its location, version where the bug lies stored in a large database by clustering

those bugs the severity of the bug, comments describing bug’s effect on the software, instructions of replicating a

bug.

Motivation: Several kinds of data mining problems in software engineering that are under dynamic investigation

based on three key viewpoints: data sources being mined, tasks being supported, and mining techniques being used.

The issue of classifying instances of software failures according to their causes arises in two common scenarios:

 When a immeasurable failures are reported by clients of deployed software and

 When a immeasurable failures are prompted by executing a synthetic test suite.

In both cases, it is possible that huge number of failures fall into a relatively small number of groups, each

comprising of failures caused by the same software defect. Thus applying data mining approaches for this software

testing. The purpose of testing a program is to determine faults that cause the system to fail rather than demonstrating

the program correctness.

Problem definition: The existing approach contains mining in source code for diagnosing faults in particular version

of the software. The automated tools which concentrates on faults in program but not on correctness. The problem

here to mine different version of programming language which is used to code the particular program and also to

diagnose bug in that application. Software errors continue to be frequent and account for the major causes of system

failures. First analyze and understand the bug characteristics, and then grouping of similar bugs. A novel approach

that applies data mining techniques to extract information in large software and exploit such extracted information

for bug detection. To recognize the bug characteristics, this critique recommends applying text classification and

information retrieval techniques to automatically categorize tens of thousands of bug reports. Semantic fault is the

foremost root cause of bugs.

ISSN: 0974-2115

www.jchps.com Journal of Chemical and Pharmaceutical Sciences

April - June 2016 E -429 JCPS Volume 9 Issue 2

Proposed work: Our approach is based on data mining approach, which has been used to cluster the bugs and

identifying the version of the source code. This approach describes the three modules which are used to fix and track

the bug. Clustering module uses metric based partition algorithm to compare the bugs for average similarity for

clustering similar type of bugs. If there is no minimum similarity it forms the individual cluster centric and finds the

similarities with the remaining bug.

Version analyzing module, here the source code is tokenized and all the keywords are parsed for identifying

the version of the open source code. These keywords are transacted and matched with the all version packages of a

particular programming language which is a large item set. And the merging module combines these two results with

the path name. The following figure.1, depicts the methodology of the system to cluster similar kind of software

bugs and finding the version of the source code. The following subsection outlines each modules work in detail.

Figure.1. Proposed methodology outline

Procedure used to cluster similar kind of bugs:

Method for Finding Similarity between Bugs (SB): The similarity measured S is bug bi is a records of bugs stored

in database of a set of open source code si € S. For each bug (bi, bj) € S is compared with another bug bj. Represents

the similarity between each bug.

SB (bi, bj) = (vbi
t vbj)/ (|vbi|2 * |vbj|2)

Where vdi and vdj are the vectors corresponding to the bi, bj. € B (Si) bugs, T denotes the transpose and |vbi|2

is the length of the vector. For each source code s € S, we have a maximum of N = Sn
2 distinct edges between two

nodes, where n= |B(s)|. With this conceptual similarity between bugs, we define a set of measure that approximates

each cluster elements by measuring the degree to which the bugs in a open source code are related.

Method for Finding Average Similarity of Bugs (ASB) In a Database: The ASB s € S is ASB(s) = 1/N * ∑i=1
N

SB (bi, bj), where (bi, bj) € E, i ≠ j, bi, bj € B(s), and N is the number of distinct bugs in open source code.

In this view, ASB(s) defines the degree to which bugs of a source code belongs together conceptually and

thus it can be used as a basis for computing the clusters.

For a source code similarity of bugs is defined as (bi, bj), generates 0 for dissimilar bugs and 1 for similar

bugs and forms a cluster in between values for partial similarities between two bugs. Forms the cluster of related

bugs like syntactic error, input output error exceptions etc. To better understand the similarity between bugs for

clustering, consider a source code s € S with five bugs after compiling b1, b2, b3, b4, b5. The similarity between the

bugs in the source code as shown in the Table 1. From the computation of ASB we consider all pairs of different

bugs, thus ASB(s) = 0.5, since the values is positive. Thus the threshold value does not indicate high nor low for

forming a cluster of similar bugs but the SB values from Table 1 shows that b1, b3, b2, and b4, b2, b5 and b4 and b5

are closely related respectively that is the ASB between each pair is larger than SB. Thus ASB is not a transitive

measure. Clusters of bugs are computerized.

Table.1. Similarities between the bugs in source code s ASB(s) = 0.5.

 b1 b2 b3 b4 b5

b1 1 0.32 0.89 0.44 0.48

b2 1 0.18 0.98 0.56

b3 1 0.42 0.25

b4 1 0.89

b5 1

Procedure used to find version: Identifying version of the source code helps us to fix bug, suppose a developer

made a change what else does to change further, it also helps to find bugs, if a programmer wants to commit changes,

but has missed a related change. Software testing can be defined as the intention of producing failure, uncover errors,

in large projects. So we used a data mining techniques to eradicate the bugs easily by mining versions, and clustering

a similar error which is a time consuming job. Versioning indicates the programming language packages evolved

from the origin of the language. Developers locate the bug and then fix it by changing files related to the bug.

ISSN: 0974-2115

www.jchps.com Journal of Chemical and Pharmaceutical Sciences

April - June 2016 E -430 JCPS Volume 9 Issue 2

Sequence Pattern Mining Algorithm: Sequence pattern mining is a new-fangled algorithm for finding all frequent

sequences within a transactional database. The algorithm is particularly effective when the sequential patterns in the

database are long. A depth-first search methodology is used to generate candidate sequences, and different pruning

mechanisms are implemented to lessen the search space. In a detailed experimental evaluation using standard

benchmark data, we segregate the effects of the individual components of our algorithm. Our performance numbers

prove that our algorithm outperforms earlier work by a variable of 3 to over an order of magnitude.

A Pos Tagger (Itemset Phase): POS tagging is typically accomplished by rule-based systems, probabilistic

information-driven systems, neural network systems. Because of non-accessibility of statistical information in

English, absolutely rule-based frameworks are only able to partly solve the problem of POS tagging. Such

frameworks will dispense the vast number of absolutely wrong tagging which would some way or another be

available if no constraints were present. The incomplete POS tagged for English introduced here decrease the number

of possible tagging for a given sentence by daunting some constraints on the sequence of lexical type that can

classically occur in an English sentence. On accessibility of statistical information, we can increase our algorithm by

including a statistical disambiguation module as a two-layered structure on top of the existing algorithm for

performance improvement. The thought, however, is to utilize a rule base for tagging as far as possible, and to take

measurable prompts just where there is no other alternative example given in figure.2.

Figure.2.Pre-Processing procedure

2. CONCLUSIONS AND ENHANCEMENTS

This paper presented a novel technology for accumulating a novel result which offers the developer to save

time and effort. To extend the compilation, we might want to do further work for following this study: First

profoundly analyzing the bugs, we would arrange them according to their semantic traits and explore various

technologies. Second we would prone to focus on cost and effectiveness between classifying bugs by analyzing

version history. Our mechanism also provides advantages over the other existing strategies whose application

requires tweaked and complex runtime environments.

REFERENCES

Achudhan M, Prem Jayakumar M, Mathematical modeling and control of an electrically-heated catalyst,

International Journal of Applied Engineering Research, 9 (23), 2014, 23013.

Amir Netz, Surajit Chaudhuri, Jeff Bernhardt, Usama M. Fayyad: Integration of Data Mining with Database

Technology. VLDB, 2000, 719-722

Arun k Pujari,Data mining techniques, Tata Mac Grill,2 nd edition Michal Young, Software testing and Analysis,

John Wiley and Sons

Benjamin Livshits V, Thomas Zimmermann: DynaMine: finding common error patterns by mining software revision

histories. ESEC/SIGSOFT FSE 2005: 296 305.

Calvin Lin, Doc Shankar and Ray Young. Diagnosing Software Bugs and Security Vulnerabilities. IBM Austin.

2004.

Donald Berndt J, John Fisher W, Johnson L, Pinglikar J, Alison Watkins, Breeding Software Test Cases with Genetic

Algorithms. HICSS, 2003, 338.

Ducasse S, Rieger M and Demeyer S, A Language Independent Approach for Detecting Duplicated Code, proc. Int'l

conf. Software maintenance, pp. 109-118, 1999.

Etzioni O, The World Wide Web: Quagmire or goldmine. Communication of the ACM, 39(11), 1996, 5-68.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chaudhuri:Surajit.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bernhardt:Jeff.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Fayyad:Usama_M=.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/vldb2000.html#NetzCBF00

ISSN: 0974-2115

www.jchps.com Journal of Chemical and Pharmaceutical Sciences

April - June 2016 E -431 JCPS Volume 9 Issue 2

Freitas Alex A, Data Mining and Knowledge Discovery with Evolutionary Algorithms, Natural computing series,

2002, 14, 265.

gJason Tsong-Li Wang, Mohammed Javeed Zaki, Hannu Toivonen, Dennis Shasha: Introduction to Data Mining in

Bioinformatics. Data Mining in Bioinformatics, 2005, 3-8.

Gopalakrishnan K, Sundeep Aanand J, Udayakumar, R, Electrical properties of doped azopolyester, Middle - East

Journal of Scientific Research, 20 (11), 2014, 1402-1412.

Gopinath S, Sundararaj M, Elangovan S, Rathakrishnan E, Mixing characteristics of elliptical and rectangular

subsonic jets with swirling co-flow, International Journal of Turbo and Jet Engines, 32 (1), 2015, 73-83.

Ilayaraja K, Ambica A, Spatial distribution of groundwater quality between injambakkam-thiruvanmyiur areas, south

east coast of India, Nature Environment and Pollution Technology, 14 (4), 2015, 771-776.

Jagadeesh R.P, Chandra Bose, S. H. Srinivasan: Data Mining Approaches to Software Fault Diagnosis. RIDE 2005:

45-52

Jaiwei Han and Micheline Kamber, Data Mining: Concepts and Techniques (2001), ISBN 1-55860-489-8h

Jinbo Bi, Vladimir Vapnik: Learning with Rigorous Support Vector Machines. COLT 2003: 243-257.

Joel D Martin: Fast and Furious Text Mining, IEEE Data Eng. Bull, 28 (4), 2005, 11-20.

John E. Bentley, Software Testing Fundamentals. Wachovia Bank, Training Solutions Charlotte NC (2004).

Keerthi SS and Shevade SK, SMO Algorithm for Least Squares SVM Formulations, Neural Computation, 15, 2003,

487-507.

Kerana Hanirex D, Kaliyamurthie KP, Kumaravel A, Analysis of improved tdtr algorithm for mining frequent

itemsets using dengue virus type 1 dataset: A combined approach, International Journal of Pharma and Bio Sciences,

6 (2), 2015, 288-295.

Li Z, Lu S, Myagmar and Zhou Y, CP-Miner, A Tool for Finding Copy-Paste and Related Bugs in Operating System

Code, PROC. SYMP. Operating System Design and Implementation, 2004, 289-302.

Lingeswaran K, Prasad Karamcheti SS, Gopikrishnan M, Ramu G, Preparation and characterization of chemical bath

deposited cds thin film for solar cell, Middle - East Journal of Scientific Research, 20 (7), 20141, 812-814, 2014.

Mark Last, Menahem Friedman, Abraham Kandel: The data mining approach to automated software testing. KDD

2003, 388-396.

Mark Last, Menahem Friedman, Abraham Kandel: The data mining approach to automated software testing. KDD

2003: 388-396.

Pan J.Y, Faloutsos C, VideoCube, A new tool for video mining and classification, ICADL Dec, 2002, Singapore.

Patrick Francis, David Leon, Melinda Minch, Andy Podgurski: Tree-Based Methods for Classifying Software

Failures. ISSRE 2004: 451-462.

Pavel Berkhin: Survey: A Survey on clustering data mining techniques. Accrue software 2(1): (2005)

Premkumar S, Ramu G, Gunasekaran S, Baskar D, Solar industrial process heating associated with thermal energy

storage for feed water heating, Middle - East Journal of Scientific Research, 20(11), 2014, 1686-1688.

Raymond Ng T and Jiawei Han member, IEEE computer society. CLARANS: A method for clustering objects for

spatial data mining. IEEE transactions on knowledge and data engineering, vol.14, No.5, sept-oct.2002.

Sang Jun Lee, Keng Siau: A review of data mining techniques. Industrial Management and Data Systems 101(1),

2001, 41-46.

Schroeder P.J and Korel B, Black-Box Test Reduction Using Input-Output Analysis. Proc. of ISSTA '00, 173-177,

2000.

Sundar Raj M, Saravanan T, Srinivasan V, Design of silicon-carbide based cascaded multilevel inverter, Middle -

East Journal of Scientific Research, 20 (12), 2014, 1785-1791.

Suresh Thummalapenta, Tao Xie: SpotWeb: Detecting Framework Hotspots and Coldspots via Mining Open Source

Code on the Web. ASE, 2008, 327-336.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wang:Jason_Tsong=Li.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Toivonen:Hannu.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Shasha:Dennis.html
http://www.informatik.uni-trier.de/~ley/db/books/collections/Wang2005.html#WangZTS05
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bi:Jinbo.html
http://www.informatik.uni-trier.de/~ley/db/conf/colt/colt2003.html#BiV03
http://www.informatik.uni-trier.de/~ley/db/journals/debu/debu28.html#Martin05
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Siau:Keng.html
http://www.informatik.uni-trier.de/~ley/db/journals/imds/imds101.html#LeeS01
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Thummalapenta:Suresh.html
http://www.informatik.uni-trier.de/~ley/db/conf/kbse/ase2008.html#ThummalapentaX08

ISSN: 0974-2115

www.jchps.com Journal of Chemical and Pharmaceutical Sciences

April - June 2016 E -432 JCPS Volume 9 Issue 2

Thooyamani KP, Khanaa V, Udayakumar R, Application of pattern recognition for farsi license plate recognition,

Middle - East Journal of Scientific Research, 18 (12), 2013, 1768-1774.

Thooyamani KP, Khanaa V, Udayakumar R, Efficiently measuring denial of service attacks using appropriate

metrics, Middle - East Journal of Scientific Research, 20 (12), 2014, 2464-2470.

Thooyamani KP, Khanaa V, Udayakumar R, Partial encryption and partial inference control based disclosure in

effective cost cloud, Middle - East Journal of Scientific Research, 20 (12), 2014, 2456-2459.

Thooyamani KP, Khanaa V, Udayakumar R, Using integrated circuits with low power multi bit flip-flops in different

approch, Middle - East Journal of Scientific Research, 20 (12), 2014, 2586-2593.

Thooyamani KP, Khanaa V, Udayakumar R, Virtual instrumentation based process of agriculture by automation,

Middle - East Journal of Scientific Research, 20 (12), 2014, 2604-2612.

Thooyamani KP, Khanaa V, Udayakumar R, Wide area wireless networks-IETF, Middle - East Journal of Scientific

Research, 20 (12), 2014, 2042-2046.

Tristan Denmat, Mireille Ducassé and Olivier Ridoux, Data mining and cross-checking of execution traces: a re-

interpretation of Jones, Harrold and Staskotest information, ASE, 2005, 396-399.

Udayakumar R, Kaliyamurthie KP, Khanaa, Thooyamani KP, Data mining a boon: Predictive system for university

topper women in academia, World Applied Sciences Journal, 29 (14), 2014, 86-90.

Walawalkar L, Mohammed Yeasin, Anand Narasimhamurthy M, Rajeev Sharma: Support Vector Learning for

Gender Classification Using Audio and Visual Cues, IJPRAI, 17 (3), 2003, 417-439.

Zhenmin Li, Yuanyuan Zhou: PR-Miner, automatically extracting implicit programming rules and detecting

violations in large software code, ESEC/SIGSOFT FSE, 2005, 306-315.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Walawalkar:L=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yeasin:Mohammed.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/n/Narasimhamurthy:Anand_M=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sharma:Rajeev.html

